Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cuong Ton and Michael Bolte*

Institut für Organische Chemie, J W GoetheUniversität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.066$
Data-to-parameter ratio $=18.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Phase transition of 3-dimethylammonio-1-phenyl-propan-1-one chloride monohydrate

The title compound, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, undergoes a reversible phase transition between room temperature and 173 K . The structure at room temperature crystallizes in space group $P b c a$, with $Z^{\prime}=1$, whereas the inversion centre is lost upon cooling and the resulting space group is $P 2_{1} 2_{1} 2_{1}$, with $Z^{\prime}=2$. The low-temperature structure is reported here.

Comment

The structure of the title compound, (I), has already been determined at room temperature (Schlemper et al., 1982), in space group $P b c a$, with $Z^{\prime}=1$. We collected a data set at 173 K and discovered that the reflections that should be absent for the different glide planes in $P b c a(0 k l$ for $k=2 n+1, h 0 l$ for $l=$ $2 n+1$ and $h k 0$ for $h=2 n+1$) were observed. The only extinction conditions that could be found were $h 00$ for $h=$ $2 n+1,0 k 0$ for $k=2 n+1$ and $00 l$ for $l=2 n+1$, indicating three twofold screw axes. Therefore, the space group at 173 K must be $P 2_{1} 2_{1} 2_{1}$, with $Z^{\prime}=2$. Refinement of the structure in $P 2_{1} 2_{1} 2_{1}$ proceeded normally and did not show any signs of missed symmetry; for example, no correlation matrix element was larger that 0.5 . A view of the two molecules in the asymmetric unit is shown in Fig. 1.

(I)

In order to check whether the phase transition is reversible or not, we collected a data set at room temperature for the previously cooled crystal. The space group was again Pbca, showing that the phase transition is reversible. The difference between the two phases is that the inversion centre, which is present at room temperature, is lost upon cooling. However,

Figure 1

The asymmetric unit of the title compound, with the atom-numbering scheme; displacement ellipsoids are shown at the 50% probability level.

Received 11 March 2004 Accepted 16 March 2004 Online 24 March 2004
the two molecules in the asymmetric unit are still nearly centrosymmetrically related, as demonstrated by a leastsquares fit (Fig. 2). When the phenyl rings are fitted, the side chain of molecule 1 is bent slightly downwards, whereas the side chain of molecule 2 is bent slightly upwards. The structure at room temperature represents an average of the two molecules in the asymmetric unit of (I) (Fig. 3). The Flack (1983) parameter $[0.51(3)]$ indicates possible inversion twinning.

Experimental

The title compound was synthesized according to the method of Hünig et al. (1979).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M=231.71$
$M_{r}=231.71$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3010$ (4) \AA
$b=11.0134$ (7) \AA
$c=29.823(2) \AA$
$V=2398.0(3) \AA^{3}$
$Z=8$

> Mo $K \alpha$ radiation
> Cell parameters from 30714 \quad reflections
> $\theta=2.1-27.5^{\circ}$
> $\mu=0.30 \mathrm{~mm}^{-1}$
> $T=173(2) \mathrm{K}$
> Plate, colourless
> $0.48 \times 0.42 \times 0.24 \mathrm{~mm}$
$D_{x}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
$T_{\text {min }}=0.869, T_{\text {max }}=0.931$
33390 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0406 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.11 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \text { 2349 Friedel pairs } \\
& \text { Flack parameter }=0.51(3)
\end{aligned}
$$

$w R\left(F^{2}\right)=0.066$
$S=0.91$
5557 reflections
296 parameters
H atoms treated by a mixture of independent and constrained refinement

5557 independent reflections
4782 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-9 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-38 \rightarrow 38$

Table 1
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1 A^{\mathrm{i}}$	$0.931(17)$	$2.189(17)$	$3.0778(13)$	$159.3(13)$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 1 A^{\text {ii }}$	$0.84(3)$	$2.35(3)$	$3.1814(16)$	$168(2)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots \mathrm{Cl} 11^{\mathrm{iii}}$	$0.92(2)$	$2.16(2)$	$3.0814(14)$	$175.2(17)$
$\mathrm{O} 2 A-\mathrm{H} 2 D \cdots \mathrm{O} 2^{\text {iv }}$	$0.90(3)$	$1.94(3)$	$2.837(2)$	$175(2)$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1$	$0.90(3)$	$2.23(3)$	$3.1138(16)$	$168(3)$
$\mathrm{O} 2 A-\mathrm{H} 2 C \cdots \mathrm{Cl} 1 A$	$0.94(3)$	$2.32(3)$	$3.2353(16)$	$163(2)$
Symmetry codes:	(i)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z ;$	(ii)	$x, 1+y, z ;$ (iii)
$\frac{1}{2}+x, \frac{3}{2}-y,-z$.				

