organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cuong Ton and Michael Bolte*

Institut für Organische Chemie, J W Goethe-Universität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 KMean σ (C–C) = 0.002 Å R factor = 0.026 wR factor = 0.066 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Phase transition of 3-dimethylammonio-1-phenylpropan-1-one chloride monohydrate

The title compound, $C_{11}H_{16}NO^+ \cdot Cl^- \cdot H_2O$, undergoes a reversible phase transition between room temperature and 173 K. The structure at room temperature crystallizes in space group *Pbca*, with Z' = 1, whereas the inversion centre is lost upon cooling and the resulting space group is $P2_12_12_1$, with Z' = 2. The low-temperature structure is reported here.

Received 11 March 2004 Accepted 16 March 2004 Online 24 March 2004

Comment

The structure of the title compound, (I), has already been determined at room temperature (Schlemper *et al.*, 1982), in space group *Pbca*, with Z' = 1. We collected a data set at 173 K and discovered that the reflections that should be absent for the different glide planes in *Pbca* (0kl for k = 2n + 1, h0l for l = 2n + 1 and hk0 for h = 2n + 1) were observed. The only extinction conditions that could be found were h00 for h = 2n + 1, 0k0 for k = 2n + 1 and 00l for l = 2n + 1, indicating three twofold screw axes. Therefore, the space group at 173 K must be $P2_12_12_1$, with Z' = 2. Refinement of the structure in $P2_12_12_1$ proceeded normally and did not show any signs of missed symmetry; for example, no correlation matrix element was larger that 0.5. A view of the two molecules in the asymmetric unit is shown in Fig. 1.

In order to check whether the phase transition is reversible or not, we collected a data set at room temperature for the previously cooled crystal. The space group was again *Pbca*, showing that the phase transition is reversible. The difference between the two phases is that the inversion centre, which is present at room temperature, is lost upon cooling. However,

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The asymmetric unit of the title compound, with the atom-numbering scheme; displacement ellipsoids are shown at the 50% probability level.

the two molecules in the asymmetric unit are still nearly centrosymmetrically related, as demonstrated by a least-squares fit (Fig. 2). When the phenyl rings are fitted, the side chain of molecule 1 is bent slightly downwards, whereas the side chain of molecule 2 is bent slightly upwards. The structure at room temperature represents an average of the two molecules in the asymmetric unit of (I) (Fig. 3). The Flack (1983) parameter [0.51 (3)] indicates possible inversion twinning.

Experimental

The title compound was synthesized according to the method of Hünig et al. (1979).

Mo $K\alpha$ radiation

reflections

 $\mu = 0.30 \text{ mm}^{-1}$

T = 173 (2) K

Plate, colourless

 $0.48 \times 0.42 \times 0.24$ mm

 $\theta = 2.1 - 27.5^{\circ}$

Cell parameters from 30714

Crystal data

C₁₁H₁₆NO⁺·Cl⁻·H₂O $M_r = 231.71$ Orthorhombic, $P2_12_12_1$ a = 7.3010 (4) Å b = 11.0134 (7) Å c = 29.823 (2) Å V = 2398.0 (3) Å³ Z = 8 $D_r = 1.284$ Mg m⁻³

Data collection

Stoe IPDS-II two-circle	5557 independent reflections		
diffractometer	4782 reflections with $I > 2\sigma(I)$		
ω scans	$R_{\rm int} = 0.061$		
Absorption correction: multi-scan	$\theta_{\rm max} = 27.6^{\circ}$		
(MULABS; Spek, 1990; Blessing,	$h = -9 \rightarrow 9$		
1995)	$k = -14 \rightarrow 14$		
$T_{\min} = 0.869, \ T_{\max} = 0.931$	$l = -38 \rightarrow 38$		
33 390 measured reflections			

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0406P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.066$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.91	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
5557 reflections	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$
296 parameters	Absolute structure: Flack (1983),
H atoms treated by a mixture of	2349 Friedel pairs
independent and constrained	Flack parameter $= 0.51$ (3)
refinement	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	0.931 (17)	2.189 (17)	3.0778 (13)	159.3 (13)
	0.84 (3)	2.35 (3)	3.1814 (16)	168 (2)
	0.92 (2)	2.16 (2)	3.0814 (14)	175.2 (17)
	0.90 (3)	1.94 (3)	2.837 (2)	175 (2)
	0.90 (3)	2.23 (3)	3.1138 (16)	168 (3)
	0.94 (3)	2.32 (3)	3.2353 (16)	163 (2)

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) x, 1 + y, z; (iii) 1 + x, y, z; (iv) $\frac{1}{2} + x, \frac{3}{2} - y, -z$.

Least-squares fit of the two molecules in the asymmetric unit of (I); only the six C atoms of the phenyl ring were fitted. Cation 1 was inverted prior to fitting. Dashed lines: cation 1; dotted lines: cation 2.

Figure 3

Least-squares fit of the two cations in the asymmetric unit of (I) and the room-temperature structure; only the six C atoms of the phenyl ring were fitted. Cation 1 was inverted prior to fitting. Dashed lines: cation 1; dotted lines: cation 2; solid lines: structure at room temperature.

H atoms bonded to C atoms were included with fixed individual displacement parameters [U(H) = 1.2 $U_{eq}(C)$] using a riding model, with C_{aromatic}-H = 0.95 Å, C_{methyene}-H = 0.99 Å and C_{tertiary}-H = 0.98 Å. H atoms bonded to N and O atoms were refined freely [N-H = 0.931 (17) and 0.92 (2) Å, and O-H = 0.84 (3)-0.94 (3) Å].

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hünig, S., Märkl, G. & Sauer, J. (1979). In Integriertes Organisches Praktikum. Weinheim: VCH.
- Schlemper, E. O., Mansour, T. S. & Kaiser, E. M. (1982). Acta Cryst. B38, 625–627.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.